Grothendieck ’ s Theorem , past and present UNCUT updated and still expanding
نویسنده
چکیده
Probably the most famous of Grothendieck’s contributions to Banach space theory is the result that he himself described as “the fundamental theorem in the metric theory of tensor products”. That is now commonly referred to as “Grothendieck’s theorem” (GT in short), or sometimes as “Grothendieck’s inequality”. This had a major impact first in Banach space theory (roughly after 1968), then, later on, in C∗-algebra theory, (roughly after 1978). More recently, in this millennium, a new version of GT has been successfully developed in the framework of “operator spaces” or non-commutative Banach spaces. In addition, GT independently surfaced in several quite unrelated fields: in connection with Bell’s inequality in quantum mechanics, in graph theory where the Grothendieck constant of a graph has been introduced and in computer science where the Grothendieck inequality is invoked to replace certain NP hard problems by others that can be treated by “semidefinite programming’ and hence solved in polynomial time. This expository paper (where many proofs are included), presents a review of all these topics, starting from the original GT. We concentrate on the more recent developments and merely outline those of the first Banach space period since detailed accounts of that are already available, for instance the author’s 1986 CBMS notes. Warning: Compared to the published one in Bull Amer. Math Soc. (2012), this version is further corrected and expanded, with plans to continue revising it periodically. ∗Partially supported by NSF grant 0503688
منابع مشابه
Birkhoff's Theorem from a geometric perspective: A simple example
From Hilbert's theorem of zeroes, and from Noether's ideal theory, Birkhoff derived certain algebraic concepts (as explained by Tholen) that have a dual significance in general toposes, similar to their role in the original examples of algebraic geometry. I will describe a simple example that illustrates some of the aspects of this relationship. The dualization from algebra to geometr...
متن کاملGrothendieck’s Theorem, past and Present
Probably the most famous of Grothendieck’s contributions to Banach space theory is the result that he himself described as “the fundamental theorem in the metric theory of tensor products”. That is now commonly referred to as “Grothendieck’s theorem” (“GT” for short), or sometimes as “Grothendieck’s inequality”. This had a major impact first in Banach space theory (roughly after 1968), then, la...
متن کاملHow Do Updated Localized Materials Affect Students’ Study Level and Perceptions in a Discipline-specific English Course?
The present study investigated the effect of updated localized material s on the English language achievement of undergraduate students of Political Science in their English for sp ecific purposes (ESP) courses in Iran. Sixty - five male and female undergraduate students (19 - 26 years old) from two universities in Iran participate d in this study. They were divided into two intact classes cons...
متن کاملCompleteness properties of locally quasi-convex groups
It is natural to extend the Grothendieck theorem on completeness, valid for locally convex topological vector spaces, to Abelian topological groups. The adequate framework to do it seems to be the class of locally quasi-convex groups. However, in this paper we present examples of metrizable locally quasi-convex groups for which the analogue to the Grothendieck theorem does not hold. By means of...
متن کاملDufour and Soret Effects on Unsteady Heat and Mass Transfer for Powell-Eyring Fluid Flow over an Expanding Permeable Sheet
In the present analysis, the Dufour and Soret effects on unsteady heat-mass transfer of a viscous incompressible Powell-Eyring fluids flow past an expanding/shrinking permeable sheet are reported. The fluid boundary layer develops over the variable sheet with suction/injection to the non-uniform free stream velocity. Under the symmetry group of transformations, the governing equations along wit...
متن کامل